

Christ Church Grammar School

PERTH, WESTERN AUSTRALIA

Introduction

Two classes – one focusing on software development (using iPads) and another focusing on mechatronic engineering (i.e. robotics and circuits) were given the opportunity to create cross-curricular projects.

We were trying to enhance students' perseverance, ability to overcome obstacles and meaningfulness of the project. We thought that engaging in a task we believed would be very motivating would lead to these outcomes.

The Research Question

How might making a self-imagined product encourage Grade 10 boys to show perseverance when faced with technical challenges?

Research Context

Christ Church Grammar School is an Anglican Boys' School in Perth, Western Australia. Our school population is approximately 1500, ranging from Grades K to 12. Our peer schools see us as having an ethnically diverse population. We see ourselves as offering boys a broad range of opportunities to develop in heart, mind and body – it is a school where academic, artistic, or sporting achievement is equally celebrated.

Participants

Sixteen boys aged 15-16 years participated, in four groups:

- Half had recently learnt how to write computer programs for iPads
- Half had recently learnt how to build robots and attach circuitry

The Research Action

- Teams were created consisting of students with different pre-existing skills
- Each team dreamed up an idea for a physical device that interacted with, or was driven by, software
- Teams followed the Maker paradigm in the design, construction and testing of their projects
- Examples of projects included:
 - a computer game with a 'glove' that functioned like a joystick
 - o a chessboard which detected when pieces were placed supported by an iPad app which recommended moves
 - o an unmanned 4-propeller drone

Data Collection & Analysis

- Informal conversations were held with students throughout the course of the research
- Interviews were conducted with each of the groups at the conclusion of the course
- Interviews were conducted and responses analysed for trends

"[Completing a milestone] is inspirational but not the real thing. There is still so much more to do"

Mechatronics Makers – Real World Engineering

Matthew Kameron and Patrick Louden Christ Church Grammar School, Perth, Australia

International Boys' Schools Coalition Action Research Program 2015 – Boys as Makers

The cross-curricular Maker-Model project had a very positive effect on student perseverance

- in a differentiated classroom
- able to approach the project

Delisle, R. (1997). How to use problem-based learning in the classroom (1st ed.). Alexandria, Va., USA: ASCD Dweck, C. (2012). *Mindset* (1st ed.). London: Robinson Gagné, F. (2012). Building gifts into talents: Brief overview of the DMGT 2.0, University of Quebec, Montreal, Canada Martinez, S., & Stager, G. (2013). Invent to learn (1st ed.). Torrance, Calif.: Constructing Modern Knowledge Press Syed, M. (2010). Bounce: The myth of talent and the power of practice. Fourth Estate, Hammersmith, London Stringer, E. (2014). Action research (4th ed.). Los Angeles: Sage Publications Tough, P. (2012). How Children Succeed. First Mariner Books, New York, NY

This poster and further information is available at <u>http://www.theibsc.org/</u> Researchers' emails: mkameron@ccgs.wa.edu.au, plouden@ccgs.wa.edu.au The project blog is located at <u>http://ccgsmaker.edublogs.org/</u>

Conclusions

The cross-curricular nature also increased task difficulty for gifted students

When engaging with core students in a cross-curricular project, the underlying skills should be easier or better established to ensure that are

Key Readings

Further Information